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FORMULATION OF A TWO-SCALE MODEL OF TURBULENCE

ROBERT RUBINSTEIN�

Abstract. A two-scale turbulence model is derived by averaging the two-point spectral evolution equa-

tion. In this model, the inertial range energy transfer and the dissipation rate can be unequal. The model

is shown to reduce to a standard two-equation model in decaying turbulence.
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1. Introduction. Despite the remarkable success of the two-equation turbulence model in predicting

many practically important turbulent 
ows, it has some important shortcomings. For example, the linear

eddy-viscosity relation between the Reynolds stress and the mean strain rate is inadequate in many problems;

nonlinear eddy viscosity models, algebraic models, and �nally the Reynolds stress transport model [1], have

been developed in response to this problem.

Whereas these models focus their attention on the Reynolds stresses and leave the two-equation model

itself basically intact, a complementary line of research [2], [3] has attempted to improve the two-equation

model by addressing the over-simpli�cation inherent in any description of turbulence by a single length-

scale. It lead to the formulation of multiple scale models of turbulence in which the transport equations

for turbulence kinetic energy and dissipation rate are each replaced by transport equations for the kinetic

energy and dissipation rate pertaining to a de�nite range of scales of motion.

Multiple scale modeling attempts to treat the response of turbulence to changes in the large-scale motion

more realistically than the two-equation model. Whereas the two-equation model assumes that the inertial

range can adjust instantaneously to changes at the large scales, multiple scale modeling allows time-delays

in this response and thereby permits a more re�ned picture of the time dependence of turbulence.

A representative multiple scale model is the model of Hanjali�c, Launder, and Schiestel (HLS, [2]), which

takes the form for homogeneous turbulence

_kp = P � �p

_kt = �p � �t

_�p = Cp1
�p
kp

P � Cp2

�2p
kp

_�t = Ct1
�p�t
kt

� Ct2
�2t
kt

(1.1)

In this model, the turbulent 
uctuations are partitioned into two regions identi�ed by the subscripts p

(production) and t (turbulence) of large- and small-scale 
uctuations respectively. Otherwise, the standard

notation is used in Eq. (1.1): k denotes turbulence kinetic energy, � is the dissipation rate, P is production,

and Cp1; Cp2; Ct1; Ct2 are model constants. Modeling the behavior of di�erent scales of motion abandons
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the strictly single-point approach; it attempts a compromise between two-point models, which o�er greater

physical �delity at the expense of greater computational complexity, and single-point modeling.

Early research on this type of model was frustrated by the inevitable appearance of a large number of

model constants for which calibrating experiments could not be readily identi�ed; thus, Eq. (1.1) requires

four constants in place of the two constants of the comparable standard two-equation model. However,

interest in multiple scale models has recently been revived by the possibility that numerical simulations

could help identify the model constants [4]. At the same time, new approaches to multiple scale modeling

based on two-point models have been advanced [3], [5], [6] which promise to eliminate, or at least reduce,

the required empirical input.

The goal of the present work is to derive a two-scale model in which energy transfer and dissipation

can be distinct and satisfy di�erent transport equations. Kolmogorov's principle of locality of inertial range

transfer [7] is used to separate these e�ects. Unlike the previous model of this type [6], the coe�cients in

the present model are independent of Reynolds number.

The multiple-scale viewpoint permits a fresh derivation of the two-equation model [3], [5], [6]. The

two-equation model will be reconsidered from this viewpoint. Then a two-scale model is derived in which

transfer through the large scales and the dissipation rate can be unequal.

Multiple-scale e�ects are expected to be important in turbulent 
ows dominated by disequilibrium

between large and small scales. When such e�ects are absent, as they are in the standard self-similar 
ows

used to calibrate turbulence models, the multiple-scale must reduce to a single-scale model with a unique

similarity solution. This principle is applied to both the HLS model and the proposed model in the case

of decaying turbulence. Conditions are found which prevent the existence of more than one exponent for

power-law decay. In both cases, the condition is a simple inequality among the model constants.

The occurence of partitioned values of turbulence kinetic energy and dissipation rate naturally generates

many new possibilities in relating the Reynolds stress and the strain rate; however, this issue will not be

addressed in the present work.

2. The Two-equation Model as a Single-scale Model. The starting point is the isotropic part of

the spectral evolution equation [9]

_E(�) = T (�) + �(�)�D(�) +D(�)(2.1)

where E(�) is the energy spectrum, T (�) is energy transfer spectrum, �(�) is the production spectrum,

D(�) is the dissipation spectrum, and D(�) represents di�usion e�ects. Only homogeneous turbulence will

be considered, so that D(�) � 0. The dissipation spectrum is de�ned by

D(�) = ��2E(�)(2.2)

and closures must be provided for T (�) and �(�).

The integrated quantities are Z 1
0

E(�)d� = k

Z 1
0

T (�)d� = 0

Z 1
0

�(�)d� = P

Z 1
0

D(�)d� = �(2.3)
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The second relation expresses the conservation of energy by nonlinear interaction. The energy equation

follows from integrating Eq. (2.1) over all wavenumbers. Using Eqs. (2.3),

_k = P � �(2.4)

This result is independent of the analytical form of E(�) and �(�), and of the closure used to de�ne T (�).

To �nd a second equation, it will be necessary to introduce some speci�c assumptions. The simplest

steady solution of Eq. (2.1) is the Kolmogorov steady state de�ned by

E(�) =

8><
>:

0 if � � �0

CKT
2=3��5=3 if �0 � � � �d

0 if � � �d

(2.5)

corresponding to

T (�) = �T f�(�� �0)� �(�� �d)g(2.6)

where T represents the energy transfer through the inertial range. In Eqs. (2.5){(2.6), �0 is the integral

scale, and �d � (�=�3)1=4 is the Kolmogorov scale. To maintain a steady state, production must balance

transfer into the inertial range, and transfer out of the inertial range must balance viscous dissipation, so

that

P = � = T(2.7)

More complex analytical forms for E(�) could be introduced, but this change adds nothing essential.

Now generalize Eq. (2.5) to the time-dependent case by letting � = �(t) and �0 = �0(t). For high

Reynolds number turbulence, ignore the consequent evolution of �d can be ignored. Assume that the second

equality from Eq. (2.7), namely

� = T(2.8)

continues to apply. Since

k =
3

2
CK�

2=3�
�2=3
0(2.9)

it follows that

_k = CK(�
�1=3�

�2=3
0 _�� �2=3�

�5=3
0 _�0)(2.10)

but this equation does not lead to the desired second equation directly, because it contatins the new unknown

_�0. We consider two methods by which a second equation can be derived.

2.1. The method of Schiestel. The problem is solved in [3] by postulating that

_�0 /
�

E(�0)
(2.11)

which is equivalent, for a Kolmogorov spectrum, to

_�0=�0 = 
�=k(2.12)
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Then Eqs. (2.10){(2.12) give

_k =
2

3

k

�
_�+

2

3

�(2.13)

which can be re-arranged as

_� =
3

2

�

k
P � (

3

2
+ 
)

�2

k
(2.14)

with a rather good value for C�1 and a value for C�2 which depends on the choice of 
. This is essentially

Eq. (27) of [3].

2.2. The method of moments. It can reasonably be objected that by assuming the length-scale

equation Eq. (2.12) the problem has simply been transferred to another variable and therefore Eq. (2.14)

has not been derived, but simply postulated indirectly.

An interesting alternative has been suggested in [5], [6]: by taking another moment of the spectral

evolution equation Eq. (2.1), an additional equation is obtained and _�0 can be eliminated between this

equation and Eq. (2.10). This implies a reduction of Eq. (2.1) to a �nite-dimensional system by a Galerkin

approximation.

For example, multiply Eq. (2.1) by ��1 and integrate. With the assumptions Eqs. (2.5){(2.6),

d

dt

hZ 1
0

d�
E(�)

�

i
=

d

dt

h3
5
CK�

2=3�
�5=3
0

i

=
_k

�0
�

3

5
Ck�

�1=3�
�5=3
0 _�

=
_k

�0
�

2

5

k

��0
_�(2.15)

and Z 1
0

d�
T (�)

�
= �

�

�0
+

�

�d
� �

�

�0
(2.16)

To make the calculation de�nite, assume for the production spectrum

�(�) =

8><
>:

0 if � � �0
4

3
CD�

1=3��7=3S2 if �0 � � � �d

0 if � � �d

(2.17)

where S is the mean strain rate. Eq. (2.17) is consistent with the usual two-equation model, since integration

over � leads to

P = CD�
1=3�

�4=3
0 S2 =

4

9

CD

C2
K

k2

�
S2 = C�

k2

�
S2(2.18)

which, for the values of inertial range constants recommended by Yakhot and Orszag [8] CD � 0:5; CK � 1:6,

gives

C� =
4

9

CD

C2
K

�
4

45
(2.19)

With this choice,

Z 1
0

d�
�(�)

�
=

4

7
CD�

1=3�
�7=3
0 S2 =

4

7

P

�0
(2.20)
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Note that Z 1
0

d�
D(�)

�
� ��

2=3
d � Re�1=2(2.21)

is negligible in the high Reynolds number limit.

Combining the results Eqs. (2.15), (2.16), (2.20), and (2.21),

1

�0
( _k �

2

5

k _�

�
) = �

�

�0
+

4

7

P

�0
(2.22)

consequently,

_� =
5

2

3

7

�

k
P(2.23)

with a value C�1 = 15=14 which is somewhat too small, but also C�2 = 0.

The absence of a destruction term comes about because of the cancellation of _k and � in Eq. (2.22).

This cancellation proves to be independent of the order of the moment taken, provided of course that the

integrals converge at large �.

The question then arises whether the result of Eq. (2.16) might not depend strongly on the assumptions

made and whether more generally, we should not obtainZ 1
0

d�
T (�)

�
= �CT

�

�0
(2.24)

with CT 6= 1. But Eq. (2.16) is reproduced exactly if the closure for T (�) given by Eq. (2.6) is replaced by

Leith di�usion closure for T (�) [9],

T (�) = �c1
@

@�
�2
p
�E(�)E(�) + c2

@

@�
�3
p
�E(�)

@E

@�
(2.25)

with constants compatible with the existence of Kolmogorov and equipartition spectra [9]. The evaluation

of the moment of order -1 has been proposed [5] for the EDQNM energy transfer model.

To conclude, write the � transport equation in the form

_� = C�1
�

k
P � (CT � 1)

�2

k
(2.26)

The values of C�1 and CT are subjects for future investigation.

2.3. The moment equation of order +2. It is natural to attempt to derive an equation for viscous

dissipation by multiplying Eq. (2.1) by ��2 and integrating. As noted in [6], this approach has the very

attractive feature that the divergences [10] of order Re1=2 cancel, forZ 1
0

�2T (�) = ��2d(2.27)

and

�

Z 1
0

d� �2D(�) = ���2=3�
10=3
d(2.28)

and the de�nition of �d shows that the right sides of Eqs. (2.27) and (2.28) can sum to zero. However,Z 1
0

d� ��2�(�) � ��1=3S2�
2=3
d(2.29)

is of order Re�1=2 and the remaining contribution from the transfer term, ���20� is of order Re
�1. Thus,

unless other contributions can be found, the right side of the moment equation of order two vanishes in the

limit of in�nite Re. Thus, although the moment equation of order -1 does not provide satisfactory model

constants, it generates a more satisfactory model form than does the moment equation of order +2.
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3. Multiple-scale Models. The simplest generalization of the previous single-scale model results from

from taking the piecewise-Kolmogorov spectrum

Ei(�) = �
2=3
i ��5=3 for �i�1 � � � �i with i � 1(3.1)

and

T (�) = �
X

1�i�n

�i[�(�� �i�1)� �(�� �i)](3.2)

Eq. (3.2) de�nes a shell model of turbulence, in which energy is transferred from each discrete region of scales

to the adjacent region of smaller scales. This picture greatly oversimpli�es the actual energy transfer process,

which is mediated by triad interactions and which permits both forward and backward energy transfer and

transfer between non-adjacent regions. A more accurate description is given by two-point closures like DIA

and EDQNM (Laporta, 1995).

Set corresponding to Eq. (2.17),

�i(�) =
4

3
CD�

1=3
i ��7=3S2 for �i�1 � � � �i(3.3)

Then the moments of order zero, obtained by integrating over the regions �i�1 � � < �i, give partial energy

equations

_ki = �i�1 � �i + Pi �Di(3.4)

where

Pi = CD�
1=3
i (�

�4=3
i�1 � �

�4=3
i )

Di =
3

4
�CK(�

4=3
i � �

�4=3
i�1 )(3.5)

and by de�nition, �0 = 0. Unlike the single-scale energy equation Eq. (2.4), Eq. (3.4) depends on the special

hypotheses made in Eqs. (3.1){(3.2).

Eq. (3.1) implies

ki =
3

2
CK�

2=3
i (�

�2=3
i�1 � �

�2=3
i )(3.6)

from which di�erentiation in time gives

_ki = CK�
�1=3
i (�

�2=3
i�1 � �

�2=3
i ) _�i � CK�

2=3
i �

�5=3
i�1 _�i�1 + CK�

2=3
i �

�5=3
i _�i(3.7)

As in the previous section, another relation is required to eliminate the new quantities _�i, and we can proceed

either by following Schiesel's approach of introducing a new di�erential equation for _�i or by forming moments

of the the dynamic equations in each spectral region.

3.1. Schiestel's method. There are several natural choices to close _�i in terms of local turbulence

quantities, each of which will lead to a di�erent model. One natural generalization of Eq. (2.12) to multiple

regions is to set

_�i = 
�i�i
1=3�

2=3
i(3.8)

so that the ratio _�i=�i is determined by the local Kolmogorov frequency.
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Schiestel ([3], Eq. (24)) suggests instead that _�i be determined as the ratio of the 
ux into the region

�i � � � �i+1 divided by the local energy density at �i. In the present notation, this leads to

_�i = 

�i

Ei+1(�i)
= 


�i

Ck�
2=3
i+1

�
5=3
i(3.9)

where the choice of Ei+1, the energy density for scales greater than �i seems to be the most natural.

Substituting Eq. (3.9) in Eq. (3.7) leads to

_ki =
2

3

ki
�i
_�i � 
�i�1 + 
�

2=3
i

�i

�
2=3
i+1

(3.10)

which can be rearranged as the partial � equation

_�i =
3

2

�i
ki
(Pi � �i) +

3

2


�i�1�i
ki

�
3

2


�
2=3
i

�
2=3
i+1

�2i
ki

=
3

2

�i
ki
Pi +

3

2


�i�1�i
ki

�
3

2

�2i
ki
[1 + 


�
2=3
i

�
2=3
i+1

](3.11)

This result di�ers slightly from Eq. (25) of [3] because of the �nal term which modi�es the destruction term.

Pi can be neglected except in the regions with small i and Di can be neglected except in the regions with

large i; in the intermediate regions, the energy content is determined by nonlinear energy transfer alone. It

is therefore a reasonable approximation to set Pi = 0 for i � 2 and Di = 0 for i < n. Then the production of

�i comes primarily from the term proportional to �i�1, the 
ux into the region � � �i from the region � � �i.

With these approximations, Eq. (3.11) reduces to the transfer equations of the HLS model of Eq.(1.1) except

for the modi�cation noted above of the destruction term.

3.2. The method of moments. As in the derivation of the single-scale model, it can be objected that

the approach of [3] requires some arbitrary choices, like Eq. (3.9). A natural generalization of the method

of moments is to form the partial moment equations

d

dt

hZ �i

�i�1

d�
Ei(�)

�

i
=

Z �i

�i�1

d�
Ti(�)

�
+

Z �i

�i�1

d�
�i(�)

�
�

Z �i

�i�1

d�
Di(�)

�
(3.12)

With the piecewise Kolmogorov forms Eqs. (3.1), (3.2), and (3.3), this gives

d

dt

h
CK

3

5
�
2=3
i (�

�5=3
i�1 � �

�5=3
i )

i
=

�i�1 � �i
�i�1

+
4

7
CD�

1=3
i (�

�7=3
i�1 � �

�7=3
i )S2 � 3�CK(�

1=3
i � �

1=3
i�1)(3.13)

where again, �0 = 0. In integrating the delta functions in Ti(�), the limits are �i�1 � � < �i.

The elimination of the quantities �i is straightforward but leads to lengthy expressions. To illustrate the

procedure, consider a two-scale model with partial energies k1; k2 and partial transfers �1; �2. Assume that

�2 balances the viscous dissipation so that this model generalizes the usual two-equation model by allowing

transfer and dissipation to be unequal: compare [6].

The partial energy equations are

_k1 = P1 � �1 �D1

_k2 = P2 + �1 �D2(3.14)

7



where in the second equation, integration over � � �1 causes the contributions from �2 to cancel. Introduce

the approximations discussed above,

P � P1

P2 � 0

D � D2

D1 � 0(3.15)

and to insure the overall energy balance

_k1 + _k2 = _k = P �D(3.16)

set

D = �2(3.17)

Then Eq. (3.14) becomes

_k1 = P � �1

_k2 = �1 � �2(3.18)

E�ectively, this is a model in which energy transfer through the large scales and the viscous dissipation can

be unequal. However, the derivation does not require the formation of the moment of order +2.

Since

k1 =
3

2
CK�

2=3
1 (�

�2=3
0 � �

�2=3
1 )

k2 =
3

2
CK�

2=3
2 �

�2=3
1(3.19)

the scale ratio �1=�0 can be eliminated through

k1
k2

=
��1
�2

�2=3h��1
�0

�2=3
� 1

i
(3.20)

or

�1
�0

=
�k1
k2

��2
�1

�2=3
+ 1

	3=2
(3.21)

Note that Eq. (3.20) implies that �1 � �0 and that Eq. (3.19 implies that �1 = �0 is equivalent to k1 = 0.

The relations

_k1 =
2

3

k1
�1

_�1 � CK�
2=3
1 �

�5=3
0 _�0 + CK�

2=3
1 �

�5=3
1 _�1(3.22)

_k2 =
2

3

k2
�2

_�2 � CK�
2=3
2 �

�5=3
1 _�1(3.23)

can be used to eliminate _�0 and _�1.

It is easiest to begin the derivation with the second wavenumber partition. A calculation similar to that

leading to the single-scale result Eq. (2.26) results in

�
2

5

k2
�2

_�2 + _k2 = (�1 � �2)CT1(3.24)
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where the present theory actually predicts CT1 = 1. Even if this value is left general, in the notation of Eq.

(1.1), this calculation predicts Ct1 = Ct2. Eq. (3.24) can be rearranged as

_�2 =
5

2

�2
k2
(1� CT1)(�1 � �2)(3.25)

where a small production term proportional to P2 has been neglected. Note that the production of �2 comes

primarily from �1.

Straightforward calculation leads to the �1 equation

n2
5

k1
�1
�

4

15

�
1�

�0
�1

� k2

�
1=3
1 �

2=3
2

o
_�1 =

3

7
P � (1� CT0)�1 �

2

3

�
1�

�0
�1

���1
�2

�2=3
(1�

5

2
CT1)(�1 � �2)(3.26)

Note that the last contribution arises from the _�1 term of Eq. (3.22), which is eliminated in terms of _�2

through Eq. (3.23).

To summarize, the two-scale model contains the partial energy equations,

_k1 = P � �1

_k2 = �1 � �2(3.27)

and the partial dissipation equations,

n2
5

k1
�1
�

4

15

�
1�

�0
�1

� k2

�
1=3
1 �

2=3
2

o
_�1 =

3

7
P � (1� CT0)�1 �

2

3

�
1�

�0
�1

���1
�2

�2=3
(1�

5

2
CT1)(�1 � �2)(3.28)

_�2 =
5

2

�2
k2
(1� CT1)(�1 � �2)(3.29)

with the de�nition

�1
�0

=
�k1
k2

��2
�1

�2=3
+ 1

	3=2
(3.30)

This two-scale, four-equation model separates large- and small-scale transfer without requiring Reynolds

number dependent coe�cients. De�ciencies of the derivation include the failure to predict C�2 and the

equality Ct1 = Ct2 in the small-scale transfer equation Eq. (3.29).

4. Relaxation to the Single-scale Model. Similarity solutions have proven indispensible in cali-

brating turbulence models. Examples include decaying turbulence and spatially self-similar turbulent shear


ows like jets, mixing layers, and wakes. All of these 
ows were applied to calibrate and validate the �rst

mixing-length models of turbulence.

We must expect that when applied to a turbulent 
ow which relaxes to a self-similar evolution, any

multiple-scale model must relax to a single-scale model with a unique similarity solution. In particular, the

additional freedom allowed in multiple-scale models must not permit spurious results like multiple power-law

exponents in decaying turbulence. Both the HLS model and the proposed model will next be analyzed in

decaying turbulence, and the conditions which prevent the existence of multiple exponents are found. In

both cases, the condition is a simple inequality among the model constants.
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4.1. The HLS model. Consider decaying turbulence described by the HLS model Eq. (1.1) with

P = 0. Look for a solution

kp = apt
�

kt = att
�

�p = ept
��1

�t = ett
��1(4.1)

Substituting in Eq. (1.1) leads to a system of homogeneous equations in the constants ap; at; ep; et which

has a nontrivial solution provided

0 =

����������

� 0 1 0

0 � �1 1

�� 1 0 Cp2 0

0 �� 1 �Ct1 Ct2

����������
= (�Ct2 � �+ 1)(�Cp2a+ 1)(4.2)

The solutions are � = �1=(Ct2�1) and � = �1=(Cp2�1) and the corresponding amplitude ratios are easily

found to be

ap : at = 0 : 1 if � = �1=(Ct2 � 1)

ap : at = Cp2 � Ct2 : Ct2 � Ct1 if � = �1=(Cp2 � 1)
(4.3)

The �rst solution in Eq. (4.3) obviously corresponds to the reduction of the two-scale model to a

single-scale model since kp = 0. To avoid the existence of a second power law in decaying turbulence, the

second solution in Eq. (4.3) must be non-realizable or unstable; its non-realizability is assured if one of the

amplitudes ap or at must be negative. This occurs if

Cp2 < Ct2 and Ct1 < Ct2(4.4)

The decay equations were integrated for models satisfying and violating the condition Eq. (4.4). The

results are shown in Fig. (4.1). First, the model constants were arbitrarily chosen as Cp2 = 1:5; Ct1 =

1:2; Ct2 = 2:0 and the initial conditions were �p(0) = �t(0) = 0:1; �p(0) = �t(0) = 1:0. In this case, Eq.

(4.4) is satis�ed. The resulting decay is shown in the left graph in Fig. (4.1). It shows that the energy kp

approaches zero after an initial transient, indicating that at long times, the multiple-scale model reduces to

a single-scale model. The dotted line shows the power law decay � � t�1 expected in this case.

To demonstrate that Eq. (4.4) is needed because the second solution in Eq. (4.3) can be stable, the decay

equations were integrated for a case which does not satisfy the constraint, Cp2 = 3:0; Ct1 = 1:2; Ct2 = 2:0.

The results are shown in the center and right-hand graphs in Fig. (4.1). In the center graph, the initial

conditions were �p(0) = 0; �t(0) = 0:1; �p(0) = 0; �t(0) = 1:0 while in the right-hand graph, the initial

conditions were �p(0) = �t(0) = 0:1; �p(0) = �t(0) = 1:0. Clearly, the power law decay is di�erent in each

case; the dotted line again corresponds to the power law k � t�1. Thus, if the conditions expressed by Eq.

(4.4) are not satis�ed, two distinct time-scaling laws can exist for decaying turbulence.

4.2. The moment model. The analysis for the moment model Eqs. (3.27){(3.30) is similar. It is

simpler to integrate Eq. (3.13) including the empirical factors in the dissipation rate terms. Substituting

the power-law decay Eq. (4.1) and the additional relations

�0 = b0t
��=2�1

�1 = b1t
��=2�1(4.5)
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Fig. 4.1. decaying turbulence, HLS model: (left) Ct1 < Cp2 < Ct2 one decay mode; (center) Ct1 < Cp2 < Ct2 two decay

modes; (right) Ct1 < Ct2 < Cp2 two decay modes. The center and right �gures show the possibility of two di�erent power law

decay rates when the condition in Eq. (4.4 is not satis�ed.

in Eq. (3.13),

3

5
CKe

2=3
1 (b

�5=3
0 � b

�5=3
1 )(

3

2
�+ 1) = �

e1
b0
CT1(4.6)

3

5
CKe

2=3
2 b

�5=3
1 (

3

2
�+ 1) = �

e1 � e2
b1

CT2(4.7)

The consistency of these equations evidently requires

�5=3 � 1 =
CT1

CT2
�(�2=3 � 1)(4.8)

where � = �1=�0. The only solution is � = 1 corresponding to �1 = �0 provided CT1 � CT2 but multiple

solutions are possible once CT1 is large enough relative to CT2. For example, a solution � � 1:2 exists if

CT2 = 2CT1. Note that if � = 1, then k1 = 0, again indicating reduction of the multiple-scale model to a

single-scale model.

In the case that only one solution exists, the power-law decay rate is again

� = �
1

C�2 � 1
(4.9)

where

C�2 =
5

2
(1� CT1)(4.10)

indicating the reduction for decaying turbulence to the correct limit.

Examples of decaying turbulence computed with the moment model appear in Fig. (4.2). The initial

conditions are

left graph Fig. (4.2): k1(0) = 0:1 k2(0) = 0:1 �1(0) = 1:0 �2(0) = 1:0

right graph Fig. (4.2): k1(0) = 0:15 k2(0) = 0:05 �1(0) = 3:0 �2(0) = 1:0
(4.11)

These initial conditions are chosen to correspond to the same initial conditions in a single-scale model,

namely k(0) = k1(0) + k2(0) = 0:2; �(0) = �2(0) = 1:0. At large times, both calculations follow the same

power law decay, but there are clearly di�erences in the transient evolution before self-similarity is obtained.

The decay of the total kinetic energy for the two sets of initial conditions is compared in Fig. (4.3).
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Fig. 4.2. decaying turbulence, moment model: (left) initial conditions given by �rst of Eq. (4.11); (right) initial conditions

given by second of Eq. (4.11). The graphs show the e�ects of di�erent initial conditions on the decay of isotropic turbulence

predicted by a two-scale model. The di�erent sets of initial conditions correspond to the same initial conditions for a single-scale

model

Although both cases follow the same power law at long times, transient e�ects cause the energy to decay

more quickly for the second set of initial conditions than for the �rst set. The capability to model this type

of transient behavior illustrates the justi�cation of multiple-scale modeling: a single-scale model could not

distinguish between these two cases.
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Fig. 4.3. decaying turbulence, moment model, energy decay for the two sets of initial conditions in Eq. (4.11).

5. Conclusions.

1. The arbitrary elements of the derivation of multiple scale models following [3] can be avoided by the

method of moments, which reduces the continuous spectral evolution equations to a �nite dimen-

sional system.

2. The moment equation of order -1 leads to a well de�ned result, but the moment equation of order

+2 is problematical.

3. However, the moment method leads to di�culties with the destruction of dissipation term both in

12



the single-scale model and in the multiple-scale models. The di�culty originates in the moment of

the transfer integral.

4. A two scale model in which energy transfer through the large scales can be distinguished from viscous

dissipation can be derived without forming the problematical moment of order +2.

5. Multiple-scale models must reduce to single-scale models when the turbulence evolution is self-

similar. Conditions which insure this reduction are derived in the special case of decaying turbulence.

The same analysis should be completed for other self-similar 
ows.

REFERENCES

[1] K. Hanjali�c and B. E. Launder, A Reynolds stress model of turbulence and its application to thin

shear layers, J. Fluid Mech. 52 (1972), p. 609.

[2] K. Hanjali�c, B. E. Launder, and R. Schiestel, in Turbulent Shear Flows 2, Selected papers from

the Second International Symposium on Turbulent Shear Flows, Imperial College London, July 2{4,

1979 (Springer, Berlin, 1980), p. 36.

[3] R. Schiestel, Multiple-time-scale modeling of turbulent 
ows in one point closures, Phys. Fluids 30

(1987), p. 772.

[4] K. Hanjali�c, private communication, 1999.

[5] A. Laporta, Etude spectrale et modelisation de la turbulence inhomog�ene, Thesis, Ecole Centrale de

Lyon, 1995.

[6] A. Cadiou, One-point multi-scale turbulence closure derived from a spectral description, Technical

Report APTF R/99-11, Department of Applied Physics, Delft University of Technology, Netherlands,

1999.

[7] A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics, MIT Press, Cambridge, MA, 1972.

[8] V. Yakhot and S. A. Orszag, Renormalization group theory of turbulence I, basic theory, J. Sci.

Comput. 1 (1986), p. 1.

[9] D. F. Besnard, F. H. Harlow, R. M. Rauenzahn, and C. Zemach, Spectral transport model for

turbulence, Theo. Comp. Fluid Dyn. 8 (1996), p. 1.

[10] H. Tennekes and J. L. Lumley, A �rst course in turbulence, MIT Press, Cambridge, MA, 1972.

13


